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Abstract. We discuss the physical nature of interactions between linear flexible chains in a 
solvent. We review the results obtained on the structure of polymer solutions, with the help 
of the observation techniques and conceptual approaches developed since 1965. Comparison 
between observed and predicted behaviour is made for values of the critical exponents and 
the universal amplitude. 
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List of main symbols 

a Size of a monomer 
b 
C Polymer concentration 
N 
4 
OR2 

R2 
S 

X Swelling (= R ~ / ” R ~ )  
z Coupling constant 
Z(S)  
Z(S, S) Connected partition function of two chains, one of them having a fixed end of 

Intensity of interaction between two points on a polymer chain 

Number of monomers in a polymer chain 
Momentum transfer in a scattering experiment 
Average square end-to-end distance of the equivalent random walk chain 
Average square end to end of the polymer chain 
Area proportional to the degree N of polarisation. Intrinsic measure of the 
quantity of the polymeric material in a polymer chain (S = “ R 2 / 3 )  

Partition function of a polymer chain with one end at the origin 

the origin 
= l/k,T 
Osmotic pressure 

P 
7r 

1. Introduction 

Polymers dispersed in solvents at room temperature form polymer solutions. This is 
the state in which linear chains are characterised. Osmotic pressure measurements in 
polymer solution revealed for the first time the existence of high molecular masses and 
this result confirmed the macromolecular hypothesis. 

In dilute solutions, the polymer chains behave, to a first approximation, as a gas. 
Indeed, the expression for the osmotic pressure is similar to the ideal gas law. There are, 
however, several intriguing facts that have aroused theoretical interest. A general and 
systematic interpretation has only been given recently: 

(i) the chain swells in good solvents, but does not in poor solvents (i.e. in the vicinity 
of a ‘Boyle’ temperature); 

(ii) the chains overlap the total solution volume, while the polymer concentration is 
still low. 

Thermodynamic predictions based on the liquid lattice theory do not fit osmotic exper- 
imental data. 

Since 1970, results of neutron scattering experiments have become available for the 
first time. They provided data on the structure of labelled fractions in polymer solutions. 
Intra- and interchain correlations could be measured separately. This information made 
it necessary to examine polymer solutions in more detail [ l ] .  It became apparent that 
overlapping polymers do not form a homogeneous system: correlations in the structure 
change at a characteristic length. An inhomogeneity could thus be resolved with use of 
the neutron scattering technique and this gave great confidence for the investigation of 
closely related systems such as polymer networks. 

At the same time, concepts were developed that departed radically from the liquid 
lattice theory. Bold modellings of polymer solutions were proposed. The history of this 
development is now well known. In 1972, de Gennes gave an equivalence between the 
partition function of a single chain and the Green function in field theory. In 1974, des 



Polymers in solution 3 

Cloizeaux showed the equivalence between polymer concentration and applied external 
field. However, this equivalence was first restricted to systems in equilibrium poly- 
merisation. The other decisive innovation came from early work (1965) by S F Edwards, 
who introduced the path integral method to calculate observables associated with the 
random conformation of a polymer chain. 

As shown by des Cloizeaux and later by Duplantier, the combination of these 
contributions proved to be very fruitful. It allowed major progress in the study of 
polymers and it opened up the way to original developments. A considerable number 
of publications have been devoted to this aspect. In particular, four books [2-51 have 
been written about the subject. The present paper reports establishedfacts. It will mostly 
follow [4]. 

2. Molecular interaction: a comparison between polymers and colloids 

The interaction between molecules is determined to a great degree by their structure. 
In particular, the compactness of the molecule plays an important role. The case of 
polystyrene is of interest because it is possible to polymerise this molecule in two different 
forms: tenuous and compact. 

(i) Linear polymer chains are obtained by free radical or anionic polymerisation. 
When dissolved in a good solvent, the chains have a random configuration. The average 
volume that a chain occupies is much larger than the effective molecular partial volume. 

(ii) The so-called latex spheres are obtained by emulsion polymerisation. After 
washing out the surfactant in a non-solvent (such as alcohol), one obtains a suspension 
of compact spheres. Of course, there are many other types of colloidal suspensions of 
hard spheres, and our system is perhaps not the best representative. However, we wish 
to compare comparable situations. When the spheres are dispersed in a good solvent, 
the chains will ultimately unfold and adopt the linear random configuration. This process 
takes time, and at the onset the dispersed phase is a solution of hard spheres. There are 
ways to stabilise the spheres permanently against dissolution, but we consider the 
somewhat extreme situation in which we may have a solution of stable spheres of pure 
polystyrene in the same solvent as linear polystyrene solutions. The samples are given 
the same degree of polymerisation ( N  - lo7) .  

Our purpose is to compare the interactions between the two distinct types of high 
molecular structure. They will be different and we wish to point out the origin of this 
difference. We start from the interaction potential u(r) between the two bare monomers 
of size a and, for simplicity, we shall assume that u(r) is of the form 

u(r) = 

u(r) = -u/r6 

r < 2a (core repulsion) 

r 2 2a (van der Waals attraction). 
(2.1) 

A measure of the strength of this interaction is given by the co-volume u which is defined 
by 

= loz d3r (1 - e - b ( r ) )  

and which, for small values of CJ ( B ~ / ( 2 a ) ~  4 1) is given by 

= - ( 2 4 3  - - ) > o .  4n( 3 ( 2 4 3  
Two cases will now be considered: the case where the monomers constitute a linear 
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Figure 1. Forces between mica surfaces bearing terminally anchored polymer chains in good 
solvents, plotted against distances. 0,. bare surfaces: the datashow van der Waals attractive 
forces. x , surfaces with anchored polymers: the data show repulsion between the plates. 
(From Taunton eta/ [ 6 ] . )  

flexible chain made up of N monomers, and the case where the monomers constitute a 
globule, also containing N monomers. For dilute solutions, the osmotic pressure ?G can 
be expanded in the form 

n g / C =  1 + C A ,  + .  . . 
where Cis the concentration of polymerised molecules. The second virial coefficient A 2  
defines the interaction between two chains in a realistic manner. This coefficient will be 
calculated in both cases and very different results will be obtained. 

2.1. Linear flexible chains 

For a solution of polymers with degree of polymerisation N ,  the second virial coefficient 
reads 

A2 = - i Z ( N ,  N)/IZ(N)12.  (2.3) 
Here, Z ( N )  is the number of configurations of a chain with a fixed end point and Z ( N ,  N )  
is the connected partition function of two chains, one of them having a fixed end point. 
To first order (single-contact approximation) we have 

If a i s  not large, A 2  is positive. This is what is generally observed: at room temperature, 
the interaction between polymers in solution is usually repulsive [6] (see figure 1). 
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2.2. Compact spheres 

When the chains form spherical globules of radius R ,  the interaction V ( r )  between two 
spheres can be written as follows: 

V(r) = w r < 2 R  
U 

V(r) = V,(r) = - (4nR3/3)’ - [ , < R  d3r1  [ 2 < R  d 3r2 Ir + rz - ri l 6  r 2 2R. 
N 

In this case, the second virial coefficient is given by 

A 2  = b l z d 3 r [ l  -exp(-@V(r))]  
0 

and for weak attractions 

2 n  
A 2  = - (2R)3  + 2 d3r@VW(r).  (2.6) 

3 [ > 2 R  

Moreover, assuming that the globule is a compact set of small spheres of radius a ,  we 
can write 

4 n R 3 / 3  = 25/2Na3 (2.7) 

R3 = 1.350 Nu3. (2.8) 

(the volume 25/2a3 corresponds to a face-centred cubic arrangement), where 

An exact expression for V,(r) has been given by Hamaker [7];  the result is 

We note that this function has two interesting limits 

(2.10) 

G 1. (2.11) 

U r 
for-% 1 

2R 
Vw(r) = - N2 5 r 

3 
V,(r) = - - N2 -- 

2 ( 2 R ) 5 r - 2 R  

and 
U 1  r - 2R 

foro<- 
2R 

This potential displays the Hamaker divergence [7] for r -2R.  This divergence makes 
it necessary to introduce a cut-off at r = 2R + a,, where a, is proportional to a.  

Thus, neglecting terms that vanish when a,/R + 0, we obtain 

vw = 
Z R f a ,  

Finally, for N 9 1, we obtain 

1nN + (2.12) 

Now, the existence of the factor In N has a strong influence on the value of A2  and if 
Nis large enoughA2 becomes negative (compare with (2.4)).  This effect is a consequence 
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of Hamaker’s divergence. This can be seen by making the unrealistic assumption that 
the van der Waals forces are exerted between the centres of the globules. In this case 
the value of A ,  can be deduced from equation (2 .2)  by performing the transformation 

u 3  + ( 1 . 3 5 ) N a 3  cr+ N 2 0  

which leads to the expression 

(1 .35)(2a)  A2 = N -  ( 1 . 3 5 ) ( 2 ~ ) ~  - 4n 3 i (2.13) 

which must be compared with (2 .12) .  
The main difference between polymer solutions and colloidal suspensions is then the 

following. 

(i) In solutions above the ‘Boyle’ temperature (usually lower than room tempera- 
ture), the effective polymer interaction is repulsive. In neutral, non-polar colloidal 
suspensions, interactions are attractive. 

(ii) The configuration of the polymer chain varies with the strength of interaction. 
The average shape of the configuration is the main object of theoretical and experimental 
investigation. 

Intermediate situations between linear polymer solutions and colloidal suspensions 
are found in liquid membranes [8]. 

3. Swelling and screening 

A useful model representing a polymer chain in solution is the standard continuous 
model. In such a model, the chain is represented by a continuous curve which obeys self- 
similarity. It has the fractal dimension D = 2 if there is no interaction between any two 
points, or if this interaction is moderately small. 

The curve can only be drawn approximately; nevertheless, computer simulation can 
produce significant pictures [9] (see figure 2 ) .  The curve shown in figure 2 is a random 
walk with avery small step a. When this step tends to zero the limit curve is the ‘Brownian’ 
chain. It becomes impossible to draw a tangent at any of its points, and the contour 
length between any two points is infinite. The curvilinear coordinate of a point will be 
given by the area 

s = “r2/3  o s s < s  

where Or2 is the average square end-to-end distance between the point and one extremity 
of the chain (0 6 Or2 s OR2), in the absence of interaction. In particular, S is an intrinsic 
measure of the number of monomers in a chain. 

The repulsion, which causes self-avoidance between any two points (s’, s”) will be 
written 

bS(r(s’)  - r (s”) ) .  (3 .1)  
Here 6(r)  is the three-dimensional delta function and b is the intensity of the interaction. 
The relation between b and U ,  the monomer co-volume (2 .2 ) ,  is approximately: b = 
v/a4. A considerable literature is devoted to the study of the effects of repulsive ( b  > 0) 
interactions. The case of attractive interactions will be discussed in section 5 .  
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Figure 2. Two-dimensional random walk of 2 x lo5 steps. (From Duplantier and Luck [9].) 

1- 

Figure 3. Density probability for the end- 

self-avoiding (from des Cloizeaux [lo]); 
_ _ _  , equivalent random walk. 

, , I to-end distance of a polymer chain: -, 
2.0 2.5 0 0.5 1.0 1.5 

r / R  

3.1. The self-avoiding chain 

Let us first consider the probability distribution p ( r )  of the end-to-end distance. In the 
case of the random walk,p(r) is a Gaussian function. When self-avoidance is introduced 
p ( r )  is modified in particular at r = 0. Des Cloizeaux [ 101 showed that the perturbation 
at r = 0 extends to distances much greater than the monomer size (figure 3). In fact 

P ( d  cc r8  
8 = 0.275. 

for r -  0 

Computer simulations [4] confirm this prediction, but this is the only experimental 
evidence for (3.2). However, there exists a universal number h that accounts for the 
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Figure 4. Inverse scattered intensities plotted against q"". At the concentration 1 g I-' the 
chain has a swollen configuration. The constant h is inversely proportional to the slope 
of the function. At the concentration 150 g I-'  polymer-polymer interferences become 
important. Swelling has decreased and screening becomes effective. 

distributions Pij(r) of all pairs of monomers. This number has been measured. It is 
related to the asymptotic behaviour of the chain form function 

1 s  S 
h(q) = 9 (1 ds'  1 ds"exp iq ( r ( s ' )  - ~(s' '))) 

d d 

which reads 

q 2 R 2  + 1. 
h 

h(q) CC q2(~2/6)1/2u 

(3.3) 

(3.4) 

Here v is the critical exponent associated with the swelling of the polymer chain (v = 
0.588). In the Gaussian approximation 

"h = 2(1/2v)! = 1.89 (3.5) 

but, accounting for (3.1), the value of h is smaller. From an expansion of the partition 
function to first order, des Cloizeaux and Duplantier [11] obtained 

h = 1.04. 

The number h is universal. It is a measure of the density of polymer matter along the 
fractal path of the chain. Experimental evidence related to h is shown in figure 4. The 
inverse scattered intensity for scattering by a dilute polystyrene solution is plotted against 
momentum transfer. The value of h is determined from the slope of this function. 

Recent data (absolute intensity measurement) give the result h = 1.19, which is in 
fairly good agreement with the theoretical prediction. 
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3.2. A characteristic geometrical constant 

A characteristic quantity associated with a polymer chain is the ratio 

R & / R 2  

of the square radius of gyration and the square end-to-end distance. For a rod, this 
quantity is equal to &, and for a random walk, Q. In the case of a swollen chain, one 
expects R & / R 2  < Q. Indeed, using the Gaussian approximation, we obtain 

R & / R 2  = 1/(2v + 1)(2v + 2)  = 1/6.911 (3.6) 

but a better calculation [4] gives 

R & / R 2  = 116.302. (3.7) 

This ratio is closer to the random walk value. The reason is the non-homogeneity of the 
swelling which is strongest in the centre of the chain. 

3.3. Swelling of the polymer chain 
Swelling of a chain results from the repulsive interaction between all pairs of monomers. 
The weight of a configuration is 

exp - b los ds’ los ds” 6(r ( s ’ )  - r (s”) ) .  

After introduction of the dimensionless variable x = s/S, we write [12]: 
1 

bS2-(d/2) lo1 dx’ lo dx” 6(r(x’ )  - r (x”) )  

where d is the dimension of space. In this manner we introduce the coupling constant 

2 = b S 2 - ( d / 2 ) ( 2 ~ c ) - d / 2 .  (3.10) 

Ford < 4, this coupling becomes infinite, as S (the size) + W. This is the limit of interest, 
for which we calculate the observables. The dimension d = 4 is marginal (for three-body 
interactions, the dimension d = 3 is marginal). The swelling is the ratio 

X ( z )  = R 2 ( z ) / R 2 ( 0 )  

where R 2 ( z )  is the average square end-to-end distance. This quantity diverges as z + W .  

It obeys a scaling law: 

(3.11) 

For available samples, X ( z )  varies from 1 to 10. With the help of diagrams, it is 
possible to expand X ( z )  in terms of the coupling constant z :  

(3.12) 

Explicit calculations of a,, were made up to n = 6, thus including single, double, . . . and 
sixfold intrachain contacts [13].  However, the series (3.12) is divergent and its radius of 
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1.5 - 

- 

- 

0 1 2 3 4 5 
Ln(l+z) 

Figure 5. Calculated swellings X (end-to-end) and X, (centre-of-mass) plotted against the 
coupling constant z .  

convergence is zero. Des Cloizeaux et a1 [14] solved the problem by analytic renor- 
malisation of (3.12). In this method, the swelling is expanded as a function of a charac- 
teristic number CJ of the swollen state 

0 = 2v - 1 = f a  lnX/a lnz.  (3.13) 

The quantity is a priori unknown, but the condition limZ+% ao/d In z = 0 determines 
limz-,z a(z).  

The expansion 
r a 1nX -- - E 6,a" 

a 0  n = l  
(3.14) 

is calculated with the coefficients {a,}. The final results for X ( z )  and o(z )  are obtained 
by integration of (3.14) and of 8 In 2/80 (see figure 5 ) .  Precise experimental values of 
the swelling are given by light scattering data, from samples carefully prepared by 
fractionation. 

Consistency of the model is checked by comparing theoretical and experimental 
values of swelling X(S) .  Consider a set of samples i (i = 1,2 ,  . . . etc) characterised by 
different sizes Si and experimental swellings X ( S ) .  With the help of figure 5 it is possible 
to determine the corresponding coupling constants 2,. We calculate the interactions 

6, = ( 2 ~ ) ~ 1 ~ z , / S f / ~ .  (3.15) 

If the model is consistent 6, = 6, for all samples i of a given solvent solute system, at a 
given temperature. 

Figure 6 shows the manner in which this requirement is actually satisfied. Two sets 
of data [15,16] are presented, corresponding to measurements made respectively in 
1978 and 1971. The smaller dispersion of the more recent results corresponds to improved 
sample synthesis and data collection. 

We conclude that the standard continuous model and direct renormalisation give a 
good account of swelling. 
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Figure 6 .  Interaction b derived from swelling observations and figure 5 ,  plotted against 
coupling constant z .  Polystyrene in benzene: i, from Yamamoto eta1 [16]; 0, from Miyaki 
eta1 [15]. 

3.4. Osmotic coefjicient and universal interaction constant 

The repulsive interaction between two polymer chains determines the second virial 
coefficient of the osmotic pressure expansion. By definition, this coefficient is equal to 
the ratio of the partition functions (see (2.3)): 

The ratio (3.16) has the dimensions of avolume. It accounts for all two-body interactions 
between two polymer chains in solution. Since the chains expand as an effect of the 
interaction, an intrinsic measure of the two chains interaction is the quantity (3.16) per 
unit volume, i.e. the number 

(3.17) 

This is the osmotic coefficient. 
To first order in the interaction b ,  one has [4] (see also (2.4)) 

g ( z )  = ( 2 J s ) - 3 / 2 w / ~ 3 / 2  = (3.18) 

which is a result that is expected for weak interactions. The characteristic polymer 
property is related to the asymptotic behaviour of g ( z ) .  Interaction becomes shielded as 
z + x .  Moreover, 

lim g(z) = g* (= 0.233) 
2 - =  

(3.19) 

is a universal number. The fact that g* is finite can be proved by the following argument 
(des Cloizeaux [4]). First, we note in (3.11) and figure 5 that the swelling X =  R2/"R2  
tends to infinity as z + =. 
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Figure 7. Osmotic coefficient g plotted against coupling constant z :  - , theoretical 
prediction; 0, 0, measured values. (From des Cloizeaux and Jannink [4].) 

However, we may keep the square end-to-end distance, R2,  fixed, while z and X ( z )  
tend to infinity. For this, we set S ( ="R2/3) -+ 0. This is compatible with an infinite value 
of 

z = (2n)-d/2bS2-(d/2) 

if the interaction 6 increases quickly enough. We now express all terms in (3.17) as a 
function of R 2 ,  the size of the swollen chain, instead of S = "R2/3. The renormalised 
terms are finite whatever the value of z ,  and this proves the assertion. 

Theoretical and experimental values of g ( z )  are shown in figure 7. The approximate 
expression of g* to second order in 4 - d is (for d = 3) [4] 

(3.20) 

An analogy for the osmotic coefficient g is obtained in field theory by normalisation 
of the four-point vertex function. In the n-vector model, the so-called 'renormalised 
coupling constant' U is, to second order in 4 - d (for d = 3), [17] 

(3.21) 

g* = Q + &(% + ln2).  

U *  = [6/(n + 8)][& + 3(3n + 14)/(n + 8)2] 

but there is no simple relation between U *  and g*. 

3.5. Screening in semi-dilute solutions 

In dilute solutions, the chains are far apart on average. When the polymer concentration 
C increases, there exists a concentration C* at which the chains begin to overlap. This 
is the onset of the semi-dilute regime. We may write 

c* 1 / ( ~ ~ ) ~ / ~  (3.22) 

where R2 is the square end-to-end distance at zero concentration. 
The concentration C* can be very low if the chains are long. Indeed, in the limit of 

infinitely long chains, C* = 0. Thus a given concentration interval ACcan either belong 
to the dilute or to the semi-dilute regime, depending on the length of the chain. The 
main difference between a dilute and a semi-dilute polymer concerns the homogeneity 
of the polymer distribution in space. Homogeneity is a discriminating factor for the 
effects of repulsive interaction. Dilute solutions have a heterogeneous structure: the 
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polymer chains form isolated islands in the solvent. The repulsive interactions between 
monomers add up to swell the chains. 

Solutions with overlap (semi-dilute) possess a homogeneous structure on the large 
scale (-R). However, in between nearest neighbour contacts, the solution is dilute, 
and therefore inhomogeneous. The repulsive interactions acting on the homogeneous 
structure do not combine to swell the structure. On the contrary, compensations occur 
and on average the interactions screen the pair correlation function (figure 8). This 
means that correlations between monomers are effectively weaker than those associated 
with a random walk. Screening in polymer solutions was introduced by Edwards [18] 
and proved to  be a unifying concept. In semi-dilute solutions, screening and swelling 
coexist, at different scales. This generates a structure. Chain sequences swell only within 
distances 5,  the screening length. This length depends on monomer concentration and 
interaction strength b (it is independent of polymer size). 

Let us consider the experimental evidence for screening. The scattered intensity Z(q) 
(figure 8) obeys the relation 

C K q )  = A(q2  + r2> (3.23) 

where A is a constant. The singularity q2 = - E - *  implies screening in real space, i.e. an 
attenuation factor e-’’t. The semi-dilute regime exists in the limit of infinite chains, since 
the singularity is independent of chain size. 

Because screening and swelling coexist, the length 6 varies in a singular manner with 
concentration. This is based on the following remarks. 

(i) An intrinsic measure of the monomer concentration is the ‘Kuhnian’ con- 

CK = C(R2/3)”” (dimension L’’’-d). (3.24) 

centration [3] 

This concentration defines the ‘Kuhnian’ overlap length [3] 
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gK = C; l / ( d -  V u ) ,  (3.25) 

(ii) The screening length is proportional to EK 
5: = r 5 : K  (3.26) 

where r is a universal constant approximated by the relation [4] 

r = (1/4n)(g*)-l/* = 0.165 (3.27) 

derived from the simple tree approximation of the structure function. 

Experimental values of 5: are obtained from the scattered intensity data I ( q )  and 
formula (3.23). The values of 5 derived in this manner satisfy relation (3.26). The 
experimental value of r is found to be r = 0.18 * 0.015 [4]. Formula (3.23) is quite 
general, but relation (3.26) between 5:-2 and the concentration is not trivial. It is of 
interest to note that the intensity scattered by a copolymer melt undergoing chain scission 
and recombination (polycondensation) is represented [ 191 by a formula similar to (3.23). 
Here, the screening is only a manifestation of chemical homogeneity. The case of a 
swollen polymer network is also of interest [20]. The distribution of the network function 
has a characteristic inhomogeneity which causes an excess scattering with respect to 
(3.23). 

4. Crossover effects 

The universal constants related to polymer chain structure ( v ,  g*, h etc) are derived in 
the limit of infinite coupling constant, z + XI. However, physical chains are finite, and 
for instance the maximum value of z for available samples is z = 40. Thus real chains 
are in a crossover state. There are many crossover situations, depending on the chain 
environment. The parameters associated with environment are, for instance, solution 
temperature. polymer concentration and molecular mass dispersion. The effect of a 
change in these parameters reveals the physical nature of polymer systems, even though 
universality is not reached. 

4.1. Osmotic pressure in dilute and semi-dilute solutions 

The osmotic pressure experiment provides a crucial test for polymer theory. However, 
it is only recently that an adequate theoretical framework has been proposed [21]. 
The earlier approach consisted in calculating the virial expansion in the single-contact 
approximation 

However, when such a formula fits the data in the dilute regime, it gives pressures 
that are too high when extrapolated in the semi-dilute regime. It fails to account for the 
depletion effect [2] caused by the repulsive interaction around each monomer. 

The difficulty can be overcome if the fundamental length giving the scale of the 
system is changed from ( OR2)Il2 to (R2)1'2 ( R 2  is the average square end-to-end distance 
of the swollen chain (C- 0, z >> l), whereas OR2 is the average square end-to-end 
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c l g  l-') 

Figure 9. Reduced osmotic pressure plotted against monomer concentration: 0,  polystyrene 
( M ,  = 72 000) in toluene at 37 "C; 0, polystyrene ( M ,  = 155 000) in benzene at 30 "C. The 
horizontal and vertical lines help in checking universality. (From des Cloizeaux and Jannink 
[41.) 

distance of the equivalent random walk). This is the direct renormalisation method [4]. 
This gives the result 

2 

@ = c &(g(z) ,  R 2  IC". (4.2) 
n = i  

This formula contains three parameters. Since, however, g ( z )  is practically equal to 
g* for z 2 4 (see figure 7), the osmotic pressure is a function of only two variables: 
the polymer concentration C and the size R2 (C+ 0). We propose to test the direct 
renormalisation procedure on experimental data. In this manner, we shall obtain a 
universal representation of the osmotic pressure in good solvents [4]. 

Figure 9 shows two sets of osmotic pressure data, respectively for polystyrene 
(molecular mass 7.2 X lo4) in toluene and polystyrene (molecular mass 15.5 X lo4)  in 
benzene [22]. The two curves are seen to be affine: this means that renormalisation of 
the concentrations by a factor 1.92 for the higher curve leads to superposition of the two 
curves. The renormalisation factor is equal to the ratio of the corresponding volumes 
(R2)3'2 representing the volume occupied by the chains in the limit of zero concentration. 
Hence, osmotic pressure data for all good solutions in the dilute and semi-dilute regime 
can be represented on a universal curve: 

nB/C = F( C/C* ) (4.3) 
where C* is given by (3.22). The asymtotic form is 

F ,  (3.97 C/C*) ' l ( "d- l )  

where F, is a universal constant (F ,  = 0.4855) [4]. 

4.2. Crossover to concentrated solutions 

The standard continuous model represents the polymer chain by an immaterial curve, 
as shown in figure 2. In this model, the chain occupies a certain volume (R2)3'2 in space, 
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but it has no volume by itself. The significative parameter is the fraction of occupied 
volume C(R2)312 = C/C* (see (3.22)). The increase of the osmotic pressure associated 
with an increase of concentration is caused by repulsive interaction between fractal 
objects. The partial volume of the chain does not contribute in any way. One could 
imagine that this situation persists whatever the amount of polymer material filling a 
given volume. However, this is not the case, and beyond a certain concentration (20% 
by weight), the finite volume of the physical chain begins to be more significant than the 
overlap ratio. This is the crossover from semi-dilute to concentrated solutions. In the 
concentrated regime, the polymer solution behaves more like a binary liquid mixture. 
The osmotic pressure can now be written as 

nP/c = G((P) 

where 
and Huggins [4]. The relation between volume fraction (P and chain overlap C/C* is 

is the volume fraction of the chain. The function G has been calculated by Flory 

(P = (C/C*)C*%" = (C/C*)S'-"d (4.4) 
where ;Ir is the chain partial volume. Given the value of C/C* ( =C(R2)3/2)  the volume 
fraction is obviously a decreasing function of the chain length. 

The crossover between semi-dilute and concentrated solutions is illustrated in figure 
10. The osmotic pressure is plotted against chain overlap C/C*. In the universal regime 
(dilute and semi-dilute concentration) all data fit the universal curve. However, beyond 
a given overlap (C/C *) small chains give a higher osmotic pressure than long chains [23], 
This is the indication of the crossover to the liquid mixture behaviour. 

4.3. Bi-disperse polymer systems 

A mixture of chains having two different lengths, but identical chemical nature, form 
bi-disperse polymer systems. These systems present interesting structural problems, 
which have not yet been entirely solved. Application of field theory and of renor- 
malisation gives the answer, but some work remains to be done. 

4.3.1. Swelling of a long chain in a liquid of shorter chains. Here we report predictions 
and observations on the swelling of a long chain in a liquid of smaller chains. The result 
displays interesting scale invariant properties of polymer chains. 

Let SI be the Brownian size of the long chain, and the S the Brownian size of the 
shorter chains (S s SI). If S is negligible with respect to SI, the S1-chain will swell as 
described in section 3.2. On the other hand, if S is of the order of SI, the correlations 
are totally screened and the S1-chain has a random walk configuration (Brownian chain). 
The problem is to determine the crossover function for the average swelling of the long 
chain X ( S , ,  S). 

For this, we express the swelling as afunction of an effective coupling constant zeff [4]: 

zeff = (2n)-3/2beff~p2 (4.5) 

where the interaction beff is given by 

beff = 1/CS2. 

Here C is the concentration of the small chains (polymer melt). Formula (4.6) is 
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Figure 10. Reduced osmotic pressure plotted against overlap ratio: ----, calculated asymp- 
totic form of the universal behaviour. Deviations from universality are seen at higher 
concentrations, at which the liquid lattice theory holds true. (From Noda era/ [ 2 3 ] . )  

derived from the expression for the second virial coefficient for labelled chains in a 
homogeneous polymer melt [ 11. Finally 

Z,ff = (2n)-3’2(S&)/CS (4.7) 
and 

X ( S ,  ,S) = 2:p-l)  (4.8) 

which is the desired result. 

quantity is independent of the size S of the chains. 
The quantity CS is equal to the monomer concentration. In the liquid state, this 

Thus zeff - S;/* /S.  This is verified experimentally [24]. 
Let us now consider the consequences of (4.7) with respect to scale changes. If, for 

instance, we double both sizes SI and S, then zeff decreases and so does the swelling X 
of the long chain (see figure 11). If, on the contrary, space is dilated 

x’ = Ax (4.9) 

then zeff remains unchanged! (This is because the density of the polymer liquid changes.) 
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Figure 11. Schematic drawings of a long chain in a liquid of smaller chains. From left to right, 
the lengths of the long and smaller chains are multiplied by a factor of four. Swelling is, 
however, greater on the left than on the right. 

4.3.2.  The second virial coeficient in bi-disperse polymer solutions. The second virial 
coefficient of two identical chains Z(S ,  S ) / ( Z ( S ) ) 2  relates to the volume occupied 
by the polymer chain (3.18). It is therefore tempting to introduce the concept of equiv- 
alent impenetrable spheres. The spatial distribution of two chains would be similar to 
that of two rigid spheres. We have already seen that this picture is basically misleading 
(see section 2), but here we give another illustration of this fact. Consider the extreme 
case of a long chain SI and a short chain S, the latter being of the size of a solvent 
molecule. Obviously, the short chain is able to approach the long chain well inside the 
sphere of radius ( R 2 ( S 1 ) ) 1 / 2 .  Thus, the equivalent hard sphere model breaks down. 
Witten and Prentis [25] proposed a crossover formula 

(4.10) 

where the osmotic coefficient is slightly smaller than g* (g = 0.78g*). Experimental 
results [26] seem to agree with (4.10). A good theory could give a more precise descrip- 
tion of the polymer structure. 

5. Polymer chains in poor solvents 

In poor solvents, the attractive forces acting on polymer chains become important. 
These forces cause two observable phenomena, which are critical demixtion and chain 
collapse. In the standard continuous model, the balance (2.1) between repulsion and 
attraction is replaced by a combination of attractive two-body and repulsive three-body 
short range interactions. 

5.1. Universality of critical demixtion? 

If the temperature of a polymer solution in a poor solvent is lowered, the solution phase 
separates into two phases. The transformation is associated with a critical phenomenon, 
in the vicinity of a temperature T, and a concentration C,. Critical opalescence is 
observed. This behaviour is well described by the n-vector model, with a value n = 1 for 
the dimension of the order parameter. 
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The critical exponents associated with demixtion (n = 1, d = 3) are well known and 
their values have been verified experimentally. They are same as those measured in 
the demixtion of simple binary liquids. The difference concerns the domain of the 
temperature-concentration diagram in which observables obey the critical scaling laws. 
This domain is known to be quite extensive for the case of simple binary liquids. It 
reduces to l / q N  in the case of polymer solution, and it shrinks to an insignificant size 
in the case of polymer blends. 

A complication arises from the fact that polymer chains in solution form by them- 
selves a critical system in the limit S-+ x. This system was recognised to belong to the 
n-vector model (n = 0, d = 3) [2]. Thus two critical phenomena coexist in polymer 
solutions and extert mutual effects on each other. In particular, in the limit S+ = the 
temperature T, tends to the Flory temperature, identified as the tricritical point [2]. 
Here we report an effect of the chain size S o n  the critical demixtion curve. 

In the vicinity of critical demixtion (T, ,  C , )  the solute volume fractions q'( T ) ,  q"( T )  
for the demixtion curve obey the scaling relation 

( q ' ( T )  - q " V ) ) / ~ c  = B,(-tIP (5.1) 

where the reduced temperature t = ( T  - T,)/Tis the relevant parameter; B, is a non- 
universal amplitude and @ is the critical exponent of the (n = 1, d = 3) model (@ = 
0.325 k 0.002). Dobashi et a1 [27] have made precise measurements of @ and B, for 
different polymer sizes S. They found that B, decreases with S while @ remains constant. 
This is the way the two critical phenomena coexist. 

It has been suggested [4] that there is a better representation of the demixtion 
fluctuation in polymer solutions-namely, the use of a more intrinsic reduced tem- 
perature 

= - l /T>/<l /Tc - l/TF) (5.2) 
where the result TF = lims,, T,allows us to write 

( (P ' (T)  - q ' " h c  = B ( - V  (5 .3)  

where B could be a universal amplitude. A calculation of B in the simple tree approxi- 
mation gives B = 4.9. 

Figure 12 shows the experimental results corresponding to three samples of different 
sizes S. In the representation (5.3) the data are seen to superpose on a unique curve. 
The experimental value of B is 3.7. This presentation could be useful for investigating 
the tricritical limit. S+ W .  

5.2. Remark on chain collapse 

Adam and Delsanti, using light scattering, have shown that polymer chains collapse in 
very dilute solutions, as the temperature is lowered towards the coexistence curve 
[4]. This situation presents interesting problems concerning the stability of a chain 
configuration at a given temperature of the solution [28]. 

The origin of the attractive forces that cause this collapse is related to van der Waals 
forces (see $2). However, Edwards and Muthukumar [29] have shown recently that 
effective attractive forces exist for other reasons. Namely, 'if the random walk encoun- 
ters randomly placed obstacles it will localize'. Therefore, the roughness of a surface on 
which a polymer chain is deposited could cause collapse. 
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Figure 12. Universal plot of ( p l ' ( t )  - rp"(r))/plc against reduced temperature t. Polystyrene 
in methylcyclohexane. 0, M, = 1.73 X lo4; 0, M, = 1.09 X lo5; X ,  M, = 7.19 X lo6. 
(From des Cloizeaux and Jannink [4] and Dobashi et a1 [27].) 

Another situation of interest with respect to the onset of attractive forces was 
predicted by de Gennes [30] (see also Brochard and de Gennes [31]). Consider a dilute 
polymer solution, in a mixture of two good solvents, which are close to their critical 
demixtion point. The structure of such a solvent mixture is characterised by inhomo- 
geneities of size 5,  diverging at the critical demixtion point. For a < 5 < R (where a is 
the monomer size and R the polymer end-to-end distance), the effective forces acting 
on the polymer chain are attractive. This results from the preferential solvation of a 
monomer for one of the solvents. As a consequence, monomers will tend to aggregate 
in the domains that are richer in the preferred solvent. However, it is necessary that 
5 < R ;  otherwise repulsion is dominant. The authors quoted above determined acharac- 
teristic contour of the miscibility range in which the polymer chain is predicted to 
collapse. 

5.3. Polymer solutions under shear 

When shear is applied to a polymer solution, turbidity and opalescence appear at 
temperatures far above the stagnant cloud point. Rangel-Nafaile and co-workers [32] 
provided data for this observation, using polystyrene (Mw = 8 x lo6) solutions in dioc- 
tylphthalate. In their experiment, the solution is pushed through a capillary tube at a 
given flow rate Q. A visible cloudiness is detected at a temperature T,(Q). The results 
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Figure 13. Plot of the cloud point temperature T, against flow rate Q, for different con- 
centrations of the polymer solution. (From Rangel-Nafaile et a1 [32].) 0, C = 0.02 g m1-I; 
0. C = 0.042 g ml-’; V, C = 0.057 g m1-l; 0 ,  C = 0.077 g ml-’. 

are shown in figure 13. The effect is particularly important in semi-dilute solutions. This 
phenomenon is typical of the polymer solution state. It does not show in binary mixtures 
of simple liquids under shear. 

Because the overlapping chains form a temporary network, it is natural to consider 
the elastic energy E of conformation stored in the solute under shear flow. This energy 
is proportional to the normal stress difference. When one introduces E as an external 
field in the expression of the solution free energy, one is able to calculate [33] cloud 
temperatures. A qualitative agreement with observations is obtained. 

However it has been suggested [34] that it is not necessary to invoke a ‘symmetry- 
breaking transition’ to explain the observed turbidity. The flow field provides conditions 
for the growth of concentration waves by dissipation. 

It should also be noted that bi-disperse polymer melts display [35] anomalous struc- 
ture patterns when subjected to a uniaxial step strain. In reciprocal space, these patterns 
appear as ‘butterflies’. Different interpretations are proposed for this observation, 
among which enhancement [36] of demixtion between short and long chains is one. 

6. Conclusion 

We have reported recent progress in the study of polymer solutions. Let us now sum- 
marise the results and comment on the present situation. 

We have been concerned with the universal properties related to the structure of 
polymer solutions. Precise predictions have been obtained from the standard continuous 
model of the polymer chain. A typical result is the coupling constant in good solutions, 
or osmotic coefficient g * ,  a universal number independent of the particular core repul- 
sion and van der Waals attraction between monomers. Other characteristic numbers 
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Table 1. Universal constants related to polymer solutions in three dimensions [4]. 
~~ ~ 

Constant Definition Theoretical evaluation Experimental result 

v (n  = 0) 

y(n  = 0) 

e 
u(n  = 1) 

P(n = 1) 

h 

g 

X 

F, 

r 

54 

B 

Swelling 
exponent 
Attrition 
exponent 
Contact exponent 
Correlation 
exponent 
Coexistence 
exponent 
Ratio related 
to the asymptotic 
form function 
Osmotic 
coefficient 

Geometrical ratio 

Ratio related to 
osmotic pressure in 
the semi-diluted limit 
Ratio related 
to screening 
Ratio related to 
chain size in 
semi-dilute solutions 
Amplitude associated 
with critical 
demixtion 

0.5885 i 0.0025 

1.160 ? 0.004 

0.275 t 0.002 
0.63 ? 0.0008 

0.325 ? 0.002 

1.04 

0.233 

0.952 

2.467 

0.165 

0.48 

4.9 

Light scattering 
0.588 2 0.003 
Computer simulation 
1.1663 2 0.0003 

Light scattering 
0.63 t 0.005 
0.325 ? 0.01 

Neutron scattering 
1.16 

Osmotic pressure and 
scattering light 
0.233 i. 0.007 
Computer simulation 
0.93 
Osmotic pressure 
2.46 ? 0.02 

Neutron scattering 
0.19 2 0.01 
0.49 ? 0.03 

Direct observation 
of phase separation 
3.7 

Table 2. Table of universal constants related to polymer solutions in two dimensions [4]. 

Constant Definition Theoretical evaluation Experimental result 

v ( n  = 0) Swelling exponent 0.75 

y ( n  = 0) Attrition 1.333 

Vt  Swelling exponent 0.55 ? 0.01 

0 Contact exponent 0.444 

X Geometrical ratio 0.799 

exponent 

(tricritical) 

Osmotic pressure 
0.79 2 0.01 
Computer simulation 
1.33 ? 0.003 
Osmotic pressure 
0.56 ? 0.01 
Computer simulation 
0.49 ? 0.06 
Computer simulation 
0.84 

attesting to the universal nature of dilute and semi-dilute polymer solutions are displayed 
in table 1, for three dimensions, and in table 2 for two dimensions. Thus, besides critical 
opalescence, polymer solutions display an intrinsic critical behaviour, corresponding to 
the limit of infinite chains. Tricritical and mean field behaviours are also identified. 



Polymers in solution 23 

Predictions have been tested for physical experiments and computer experiments. 
These experiments are complementary. However, the laws concerning the partition 
function and directly related quantities have only been tested by computer experiments. 
It is worth pointing out that new observation techniques have been developed. The 
isotopic substitution method, associated with the neutron scattering technique, has 
improved our ability to establish contrasts. The contrast between a polymer chain and 
its environment is at the heart of the problem, because of the fractal nature of the 
polymer configurations. It is also well suited for determining interaction parameters. 

The standard continuous model could be used further to derive exact results, in 
closely related domains such as: 

(i) the structure of multicomponent solutions (more than one solute or solvent); 
(ii) the dynamics of polymer chains in solution. Introducing the equivalent Brownian 

areas (section 3.1) in the Rouse equation, one obtains immediately an expression of the 
internal ‘diffusion’ coefficient 9 in units of s2/t (cm4 s-l), which is the expected result. 

Remarkably, the simple tree approximation gives good results when applied to the 
determination of structure functions in concentrated solutions. In semi-dilute and dilute 
solutions, the contribution of loops is important and explicit results need to be calculated. 

The new concepts that were successfully developed for the study of linear flexible 
chains in solution are also applicable to other similar systems: branched polymers, gels 
and all sorts of finely divided matter with long range correlations. The polydispersion in 
these systems is an essential factor in their structure and not simply a corrigible effect. 

A basically different approach is probably needed for studying systems in which the 
persistence length is important, such as solutions of charged molecules and, in general, 
mesomorph polymers. 

Acknowledgments 

The authors thank M Daoud and J Teixeira for criticism of the manuscript. One of 
us (GJ) gratefully acknowledges earlier collaboration with the STRASACOL group 
(Strasbourg, Saclay and College de France). 

References 

[l]  Daoud M ,  Cotton J P, Farnoux B, Jannink G, Sarma G,  Benoit H, Duplessix R, Picot C and de Gennes 
P G 1975 Macromolecules 8 804 

See also 
Cotton J P 1973 Thesis Paris University 
Farnoux B 1975 Thesis Strasbourg University 
Daoud D 1977 Thesis Paris University 
Rawiso M 1987 Thesis Strasbourg University 

[2] de Gennes P G 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornel1 University Press) 
[3] Dol M and Edwards S F 1986 The Theory of Polymer Dynamics (Oxford: Clarendon) 
[4] des Cloizeaux J and Jannink G 1987 Les PolymPres en Solution; leur Modtlisation et leur Structure (Les 

[ 5 ]  Freed K F 1987 Renormalisation Group Theory of Macromolecules (New York: Wiley) 
[6] Taunton H J ,  Toprakcioglu C, Fetters L and Klein J 1985 Nature 332 712 
[7] Israelachvili J N 1985 Intermolecular and Surface Forces (London: Academic) 
[8] Peliti Land Leibler S 1985 Phys. Reu. Lett. 54 1690 

Ulis: Editions de Physique) 



24 G Jannink and J des Cloizeaux 

[9] Duplantier B and Luck J M 1988 Saclay 
[ 101 des Cloizeaux J 1974 Phys. Reu. A 10 1665 
[ 111 des Cloizeaux and Duplantier B 1985 J .  Physique Lett. 46 L457 
[ 121 Duplantier B 1988 J .  Ann. Soc. Math. France (ed SocietC de MathCmatiques de France, Paris) 
[ 131 Muthukumar M and Nickel B G 1984 J .  Chem. Phys. 80 5839 
[14] des Cloizeaux J ,  Conte Rand Jannink G 1985 J .  Physique Lett. 46 L595 
[15] Miyaki Y, Einaga Y and Fujita H 1978 Macromolecules 11 1180 
[16] Yamamoto A, Fuji M, Tanaka G and Yamakawa H 1971 Polym. J .  2 799 
[ 171 Brezin E ,  Le Guillou J C and Zinn-Justin J 1976 Field Theoretical Approach to Critical Phenomena in 

[I81 Edwards S F 1965 Proc. Phys. Soc. 85 613 
[I91 Benoit H, Fisher E W and Zachmann 1989 Polymer 30 379 
[20] Bastide J ,  Leibler Land Prost J to be published 
[21] des Cloizeaux J 1975 J .  Physique 36 281 
[22] Noda I ,  Kat0 N, Kitano T and Nagasawa M 1981 Macromolecules 14 668 
[23] Noda I ,  Higo Y, Ueno N and Fujimoto T 1984 Macromolecules 17 1055 
[24] Kiste R G and Lehnen B R 1976 Makromol. Chem. 177 1137 
[25] Witten T A  and Prentis J J 1982 J .  Chem. Phys. 77 4247 
[26] Lapp A 1987 Thesis Strasbourg University 

Broseta D 1987 Thesis Paris University 
[27] Dobashi T, Nakata M and Kaneto M 1980J. Chem. Phys. 72 6685 
[28] Benoit H. Borsali R and Duval M Macromolecules to appear 
[29] Edwards S F and Muthukumar M 1988 J .  Chem. Phys. 89 2435 

Edwards S F and Chen Y 1988 J. Phys. A :  Math. Gen. 13 2963 
[30] de Gennes P G 1976J. Physique 37 59 
[31] Brochard F and de Gennes P G 1980 Ferroelectrics 30 33 
[32] Rangel-Nafaile C. Metzner A B and Wissbrun K F 1984 Macromolecules 17 1187 
[33] Onuki A 1989 Phys. Reo. Lett. 62 2472 
[34] Helfand E and Fredicksen G H 1989 Phys. Reu. Lett. 62 2469 
[35] Bastide J .  Buzier M and Boue F 1988 Polymer Motion in Dense Systems ed D Richter and T Springer 

[36] Brochard F and de Gennes P G 1988 C.R. Acad. Sci., Paris I1 306 699 

Phase Transitions and Critical Phenomena vol6 ed C Domb and M S Green (New York: Wiley) 

(Berlin: Springer) p 112 


